|
Решения из сборника задач для абитуриентов
|
Решения из сборника задач для абитуриентов |
Страницы: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Решение задач по геометрии для для выпускников старших классов и подготовки абитуриентов к экзаменам
Перейти к содержанию Решения задач по геометрии для абитуриентов
1 Сколько сторон имеет выпуклый многоугольник, каждый угол которого равен 90; 60; 120; 108
1 Найдите углы выпуклого четырехугольника, если они равны друг другу
2 В выпуклом четырехугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырехугольника. Докажите, что диагонали равны.
1 Найдите углы A, В и С выпуклого четырехугольника АВСD, если А = В = C, а угол D 135
2 Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.
1 Докажите, что выпуклый четырехугольник ABCD является параллелограммом, если углы BAC = ACD и BCA = DAC; AB||CD, A = C.
2 Докажите, что отрезок, соединяющий середины боковых сторон трапеции, параллелен основаниям трапеции.
3 Диагонали прямоугольника ABCD пересекаются в точке О. Найдите периметр треугольника AOB, если CAD= 30, AC = 12 см.
4 Из вершины В ромба ABCD проведены перпендикуляры ВК и ВМ к прямым AD и DC. Докажите, что луч BD является биссектрисой угла KBM.
5 На диагонали AC квадрата ABCD взята точка М так, что АМ = AB. Через точку М проведена прямая, перпендикулярная к прямой AC и пересекающая BC в точке Н. Докажите, что ВН = НМ = МС.
1 Из вершин B и D параллелограмма ABCD, у которого AB ≠ BC и угол А острый, проведены перпендикуляры ВК и DM к прямой AC. Докажите, что четырехугольник BMDK параллелограмм.
2 Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольник A1B1C1D1, вершинами которого являются середины отрезков OA, OB, OC и OD параллелограмм.
3 Сумма углов при одном из оснований трапеции равна 90. Докажите, что отрезок, соединяющий середины оснований трапеции, равен их полуразности.
4 В параллелограмме, смежные стороны которого не равны, проведены биссектрисы углов. Докажите, что при их пересечении образуется прямоугольник.
5 Докажите, что точка пересечения диагоналей ромба равноудалена от его сторон.
6 На двух сторонах треугольника вне его построены квадраты. Докажите, что отрезок, соединяющий концы сторон квадратов, выходящих из одной вершины треугольника, в два раза больше медианы треугольника, выходящей из той же вершины.
1 Точки М и N середины сторон AD и BC параллелограмма ABCD. Докажите, что прямые AN и MC делят диагональ BD на три равные части.
2 Большее основание трапеции в два раза больше ее меньшего основания. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. Найти отношение высоты каждой из двух полученных трапеций к высоте данной трапеции.
3 В прямоугольнике со сторонами a и b проведены биссектрисы всех углов до взаимного пересечения. Найти площадь четырехугольника, образованного биссектрисами.
4 Длины сторон и диагоналей параллелограмма равны соответственно a, b, c и f. Найти углы параллелограмма, если a^4 + b^4 = c^2*f^2
|
Быстрый переход:
|